NAME EDUCATION SERIES

METAL ROOFS: WIND UPLIFT(ING) OR NOT?

Wind pressure forces the panel to deflect, and in failure mode, opens the seams and shifts the panels.

Why Wind Clamps?

- Much more cost effective than alternative methods
- Can be retrofitted
- Allow the use of standing seam roofs in some cases where the roof alone will not meet the pressures
- Increase in allowable loads can be as much as 300 percent depending on panel profiles, gauge, and purlin spacing
- May help meet new ASCE 07-16 codes without adding costly structure
- FM Global requires their use in tropical zones

BUILDING DESIGN RISK CATEGORIES

Ultimate Wind Speeds

Categories	Buildings and Other Structures Represented	(Designed to withstand three-second wind gust 33 feet above ground)	
		U.S. Non-coastal Areas	U.S. Coastal Areas
Category I	Low risk to human life in the event of a failure	105 mph	170 mph
Category II	Not listed in categories 1, 3, or 4.	115 mph	180 mph
Category III	Substantial hazard to human life in the event of failure	120 mph	200 mph
Category IV	Emergency services facilities	120 mph	200 mph

